
26 janvier 2012

L'énergie nucléaire est-elle une énergie d'avenir

compte tenu des rogrès

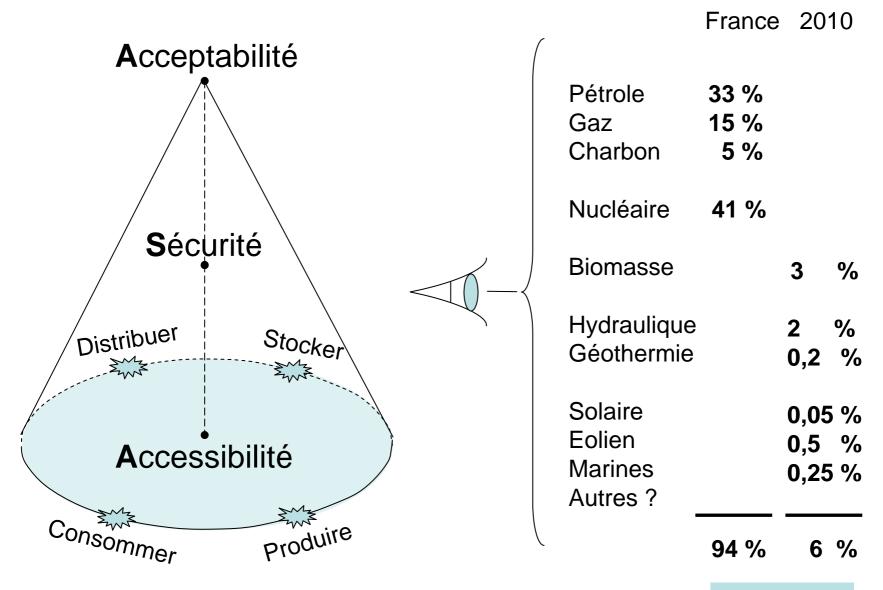
tech

!S?

- **Avenir** ? ⇒ 2030 2060
 - ⇒ population mondiale 7 x 10⁹ 8 x 10⁹

Progrès

technologiques?


- Accessibilité
- ASA Sécurité
 - Acceptabilité

- énergies renouvelables
- énergie nucléaire elle-même :
 - fission
 - fusion

Eclairages

- technico-scientifiques
- socio-économiques

ASA versus FILIERES

SP - A 03

TRANSFERTS ENERGETIQUES

	Production		Stockage	tockage Distribution		Consommation	
	Réaction	Vecteurs		Réseau	HR	Déchets	
Pétrole	Combustion)	0	XX	X	GES	
Gaz	"	Thermique	0	XX	X	Gaz à effet serre	
Charbon	"	}	0	XX	X	"	
Biomasse	"	Electricité	0	X	X	"	
Nucléaire	Fission .	J	0	XXX		RAD	
						Radioactivité	
Hydraulique	Mécanique	Electricité	0 ?	XXX		DI	
Eolien	"	,,	Intermittent	XXX		Déchets industriels	
Marines	"	"	,,	XXX		"	
.	Dhotovoltoïaua			V			
Solaire {	Photovoltaïque Eau chaude	", Thormique	,,	X	X	,,	
	Eau chaude	Thermique	"		X	,,	
Géothermie		Thermique	0 ?		X	"	

CHOIX ET DEFIS

2 configurations

2 vecteurs

- générale : Réseau - électricité

- ponctuelle : Hors-réseau - thermique : pétrole, gaz ...

4 préoccupations

Ressources

- stockage

- réserves

Fins de cycle

- gaz à effet de serre (GES)

- déchets radioactifs (RAD)

France : consommation d'énergie finale (corrigée du climat) par secteur

France: final energy consumption (corrected for climate) by sector

Mtep	1973	1980	1990	2000	2010	%/an %/Year	Parts (%	Share (%)
Mtoe						1973-2010	1973	2010
Industrie Industry	48	45	38	39	35	-0,8	33,1	20,8
dont sidérurgie of which iron and steel industry	13	11	7	6	5	-2,4	8,6	2,9
Résidentiel- tertiaire Residential-tertiary	56	54	58	67	68	0,5	38,9	40,1
Agriculture	4	3	4	3	4	0,3	2,6	2,5
Transports	26	32	41	49	50	1,8	17,9	29,5
Total énergétique Energy total	134	134	141	158	158	0,4	92,4	92,9
Total non énergétique Not energy total	11	12	12	17	12	0,3	7,5	7,1
Total	145	146	153	175	170	0,4	100	100

Source : Bilan énergétique de l'année 2010 en France, Observatoire de l'énergie

France : consommation d'énergie finale (corrigée du climat) par énergie

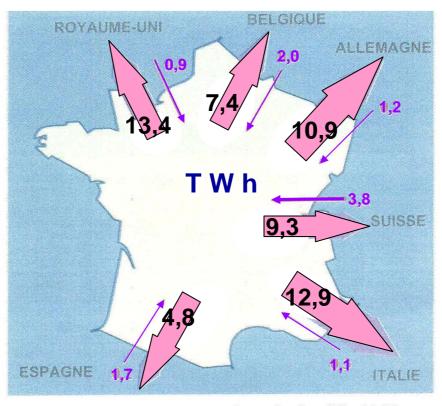
France: final energy consumption (corrected for climate) by energy

Mtep	1973	1980	1990	2000	2010	%/an %/Year	Parts (%)	Share (%)
Mtoe						1973-2010	1973	2010
Charbon Coal	18	13	10	7	6	-3,1	13,2	3,6
Pétrole OII	85	78	71	74	66	-0,7	63,9	42
Gaz Gas	9	17	23	33	34	3,8	6,5	22
Electricité Electricity	13	18	26	34	38	2,9	9,7	24,1
Energies renouvelables thermiques Thermal renewable energies	9	8	11	11	14	1,3	6,7	9,1
Total	134	134	141	159	158	0,4	100	100

Source : Bilan énergétique de l'année 2010 de la France, Service de l'Observation et des Statistiques

France : bilans électriques

TWh	Consom		Echanges avec	Production intérieure Inland Production				
	Intérieure (1)	Nette (2) Net (2)	l'étranger (s) Balance (s)	Thermique classique Conventional Thermal	Hydraulique Hydro	Nucléaire Nuclear	Autres renouvelables Other renewables	Total
1950	33	29	0	17	16	Ħ	121	33
1955	50	44	0	24	26	9	128	50
1960	72	65	0	32	41	0	1780 1780	72
1965	102	94	1	54	46	1	::	101
1970	140	130	-1	79	57	5	H2	141
1975	181	168	3	101	60	17	948	179
1980	249	232	3	119	70	58	141	247
1985	303	280	-23	52	64	213	128	329
1990	350	323	-46	45	57	298	#20	400
1995	397	369	-70	37	76	359		471
2000	441	411	-69	50	72	395	IHS	517
2005	482	450	-60	59	56	430	4	549
2007	480	448	-56	55	63	419	7,9 (dont éolien : 4)	545
2008	495	461	-47	53	68	418	9,6 (dont éolien : 5,6)	549
2009	486	453	-25	55	62	390	12,2 (dont éolien : 7,8)	519
2010	513	476	-30	59	68	408	15 (dont éolien: 9,6, photovoltaique : 0,6	550


⁽¹⁾ La consommation intérieure est égale à la somme de la production nationale et des échanges d'électricité, déduction faite de l'énergie de pompage Inland consumption equals domestic generation plus imports minus exports & energy used for pumping

Source : RTE (Energie électrique en France en 2010)

⁽²⁾ La consommation nette est égale à la consommation intérieure moins les pertes de transport et de distribution Net consumption equals inland consumption minus transportation and distribution losses (3) Echanges : Importations (+), Exportations (-) Balance : Imports (+), Exports (-)

Echanges physiques d'électricité avec l'étranger

en 2008

Quelques ordres de grandeur pour la production d'électricité

La quantité d'électricité obtenue en un an avec une puissance de 1 000 MW électriques, soit près de 9 TWh, peut être obtenue avec un des moyens de production suivants :

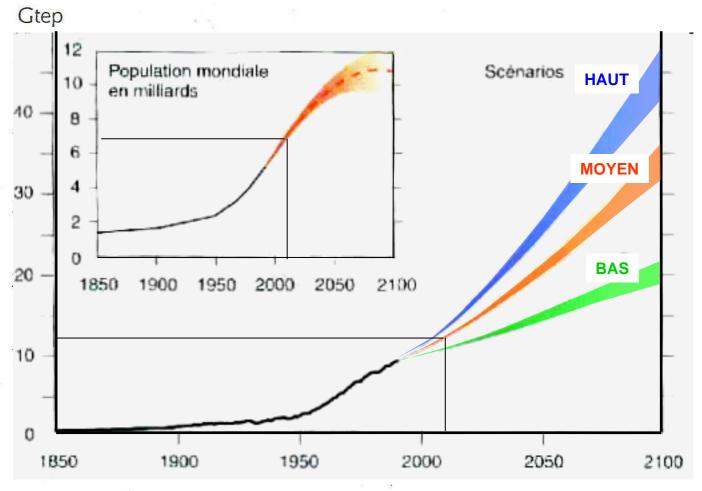
thermonucléaire : une tranche REP
photovoltaïque : 100 kilomètres carrés (rendement : 10 %, Europe centrale)
éolien : 3 500 éoliennes ¹ de 70 mètres de diamètre, d'une hauteur
comprise entre 100 et 130 m
biomasse : 30 000 kilomètres carrés de forêt
thermique { charbon : 2,3 millions de tonnes par an pétrole : 1,9 million de tonnes par an gaz (CCG) ² : 1,4 milliard de mètres cubes par an

Source : Observatoire de l'Énergie.

^{* : 1} TWh = 1 milliard de kWh

^{1 :} fonctionnam 2 500 heures par an, pour un vent dont la vitesse moyenne est de 7 m/s.

^{2 :} CCG = centrales à eyele combiné au gaz.


Puissances maximales appelées par le réseau en France (GWe)

Peak load demand of the french grid (GWe)

1950	jeudi 21 décembre	Thursday December 21	6,6 GWe		
1955	mercredi 21 décembre	Wednesday December 21	8,9 GWe		
1960	jeudi 15 décembre	Thursday December 15	12,9 GWe	> 3,5	
1965	jeudi 9 décembre	Thursday December 9	17,5 GWe		
1970	vendredi 18 décembre	Friday December 18	23,3 GWe <		
1975	mardi 16 décembre	Tuesday December 16	32 GWe		\
1980	mardi 9 décembre	Tuesday December 9	44,1 GWe		>14
1985	mercredi 16 janvier	Wednesday January 16	60 GWe		
1990	lundi 17 décembre	Monday December 17	63,4 GWe	4	
1995	lundi 5 janvier	Monday January 5	66,8 GWe		
2000	mercredi 12 janvier	Wednesday January 12	72,4 GWe		
2005	lundi 28 février	Monday February 28	86 GWe		
2010	jeudi 11 février	Thursday February 11	93,1 GWe)	

Source : Statistiques de l'énergie en France, RTE, éd. juillet 2010

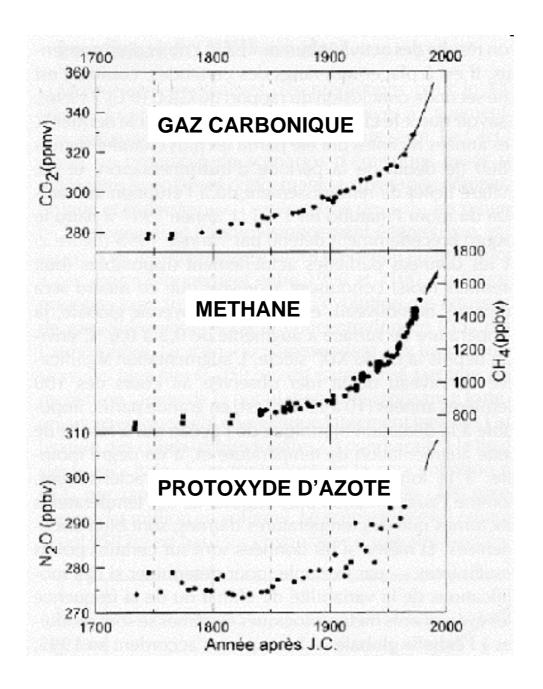
Evolution de la consommation mondiale d'énergie depuis 1850 et projections jusqu'en 2100 selon trois scénarios (hors énergies nouvelles) en insert, évolution de la population mondiale

Source: IIASA, rapport 1995

Monde: consommation versus population

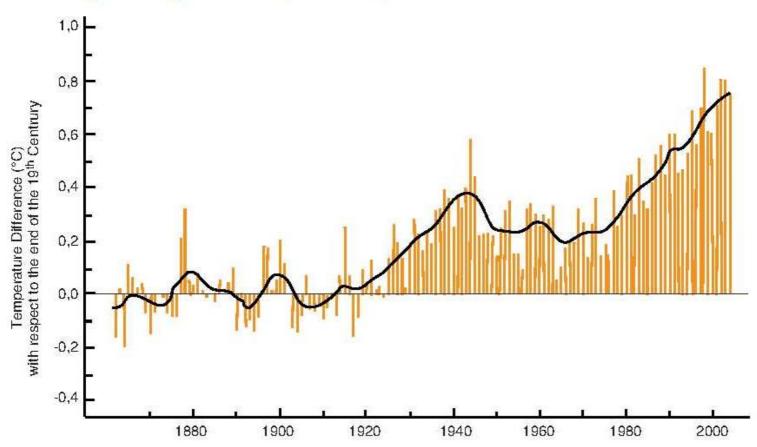
Année 2008 Year 2008	Consommation finale d'énergie par habitant (kep/hab) Final consumption of energy per capite (koo/capita)	Consommation finale d'énergie par unité de PIB (*) (kep/millier US\$2000) Final consumption of energy per GDP unit (*) (ked/thousand US\$2000)	Consommation finale d'électricité par habitant (kWh/hab) Final consumption of electricity per capita	Consommation finale d'électricité par unité de PIB (2) (kWh/millier US\$2000) Final consumption of electricity per GDP unit (9) (kWh/thousand US\$2000)	
Amérique du Nord (8)	4 185	133	(kWh/capita) 11 113	353	
North America (3) dont Etats-Unis of which USA	5 064	131	13 647	354	38,5
Amérique latine	949	111	1 956	230	
Latin America dont Brésil of which Brazil	1 018	119	2 232	260	
Europe OCDE OECD Europe	2 358	96	6 290	256	
Europe non OCDE Nion OECD Europe	1 293	124	3 381	324	
Union européenne 27 European Union 27	2 445	97	6 384	254	
dont France of which France	2 582	95	7 704	282	27,3
Ex-URSS FSU	2 340	260	4 660	517	
Moyen-Orient Middle East	1 954	238	3 384	412	
Afrique Africa	492	194	571	225	2,5
Asie Asia dont : of which:	669	119	1 383	245	
Chine China	1 035	125	2 471	298	8,2
Inde India	358	95	566	150	3,7
Pacifique OCDE (4) OECD Pacific (4)	2 748	101	8 618	316	-,
Total Monde World Total	1 260	132	2 782	291	9,5
dont OCDE of which OECD	3 106	112	8 486	307	

⁽¹⁾ Consommation finale d'énergie/ PIB Final consumption of energy/ GDP


Source : Bilans Energétiques, AIE, éd 2010 Energy Balances, IEA, 2010 ed

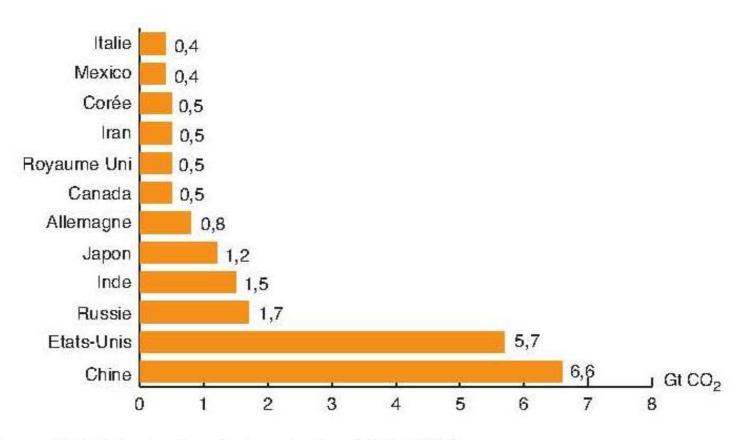
⁽²⁾ Consommation finale d'électricité / PIB Final consumption of electricity / GDP

⁽³⁾ Etats-Unis, Canada, & Mexique USA, Canada, & Mexico


⁽⁴⁾ Australie, Corée du Sud, Japon et Nouvelle Zélande Australia, South Korea, Japan and New Zeeland Nota: à la différence des zones géographiques mentionnées, les données pour la France et les Etats-Unis comprennent les combustibles renouvelables et déchets

Nota: unlike mentioned geographical areas, data for France and United States include combustible renewables and waste

Variation de la température moyenne de la surface terrestre par rapport à 1861


Change in average surface temperature compared to 1861

Source: Hadley Center for Climate Prediction and Research

Plus gros émetteurs de CO₂ en 2008

The 10 biggest CO₂ emitters in 2008

Source: CO2 Emissions from fuel combustion, AIE, éd. 2010

Emissions types de la production électrique (valeurs pour les kWh d'EDF *)

Filières	Emissions** (g équiv. CO ₂ /kWh		
Eoliennes ***	12		
Nucléaire	4		
Hydraulique fil de l'eau	6		
Hydraulique retenue	7		
Hydraulique pompage	109		
TAC (turbine à combustion)	1 200		
Diesels	897		
Charbon 600 MW (avec désulfuration)	1 010		
Fioul	1 080		
Charbon 250 MW (sans désulfuration)	1 058		

^{*} Résultats issus d'études ACV

^{**} Les émissions considérées sont les principaux gaz contribuant à l'effet de serre. La pondération par leur potentiel de réchauffement global respectif, à horizon 100 ans, permet d'obtenir l'indicateur exprimé en équivalent CO₂.

^{***} Les valeurs retenues sont celles publiées par Ecolnvent. Source : Profil Environnemental du kWh EDF; EDF 05/2011 ; coefficients 2011 d'après données filières 2009 sur www.edf.fr

LOIS PHYSIQUES

Energie = rupture d'un état lié / force en action 4 interactions fondamentales de l'Univers

- gravitation ⇒ énergie cinétique
- interaction faible \implies fusion nucléaire
- interaction forte \implies fission nucléaire
- interaction électromagnétique \implies cortège électronique atome
 - ⇒ énergie chimique, électrique, calorifique, radiative ...

Energie = se transforme, se conserve 2^{ème} principe de CARNOT

Potentiels énergétiques

1 GWh = 0.086 ktep

1 homme – énergie biochimique (aliments + air)

repos, 37°C : ← 100 W activité physique : ← 500 W

3,67 t eau / 100m - énergie cinétique ⇒ 1 kWh

1 kg charbon - combustion ⇒ 8 kWh

1 kg pétrole, gaz - combustion ⇒ 12 kWh

1 kg H2 - combustion ⇒ 39 kWh

centrale thermique 1000 MWe 💝 1 500 000 t pétrole / an

1 kg U - fission → 10 000 kWh

centrale électronucléaire 1000 MWe 💝 27 t U / an

1 kg $H_2 \rightarrow H_3$ – fusion \rightarrow 180 000 000 kWh

soleil

SP - A 018

Ressources potentielles des énergies renouvelables

SOLAIRE

Puissance reçue au-dessus de l'atmosphère 1,4 kW / m²

Puissance reçue au niveau du sol 1 kW / m²

Durée annuelle d'ensoleillement (France) 1750 à 3000 h/an

Energie reçue par m² de surface horizontale (France) 1100 à 1900 kWh/m²/an

EOLIEN

Gisement France 12 000 MWe

GEOTHERMIE

Flux géothermique 0,05 à 0,1 W/m²

Gradient géothermique 3,3 °C/100m

Gisement basse énergie θ < 100°C (France) 6 Mtep/an

MARINES

Marées - gisement mondial 100 à 300 GWe

- puissance installée Usine de la Rance 250 MWe

Vagues

- puissance par mètre de vague 30 à 40 kW/m

Thermique

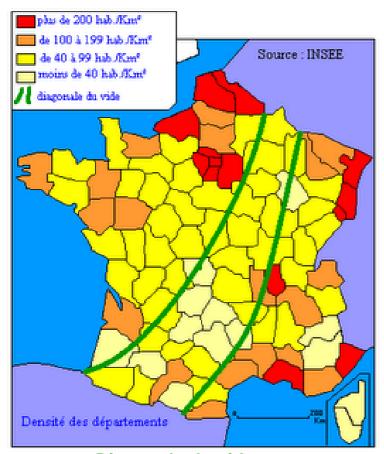
- gisement mondial 10 TWe

SP - A 019

Stockage et nouveaux vecteurs

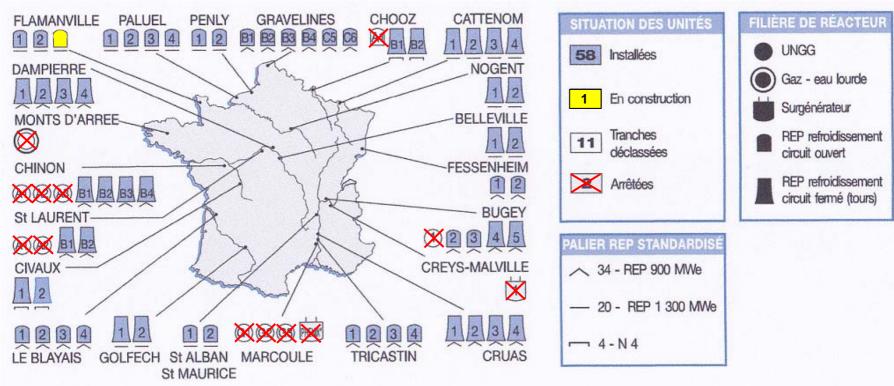
Accumulateurs – piles : systèmes électrochimiques

(Densité énergie massique)


Batteries au Pb 30 Wh / kg

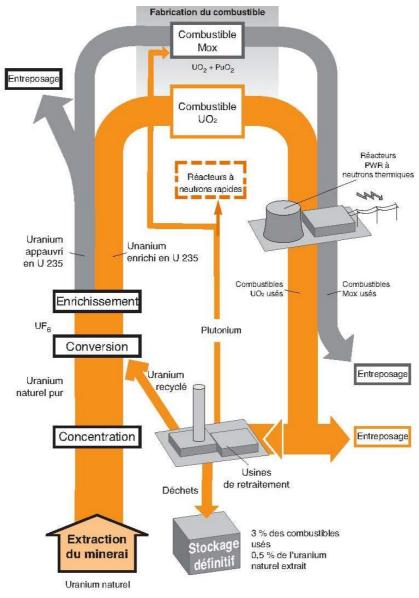
Ni - Cd 50 Wh / kg

Ni – Métal Hydrure 80 Wh / kg


Li - Ion 260 Wh / kg

Vecteur Hydrogène

Diagonale du vide


CARTE DES UNITES ELECTRONUCLEAIRES EN FRANCE AU 01-01-2011

Elecnuc - Edition 2011 - CEA

REP: réacteur à eau ordinaire sous pression

Cycle simplifié du combustible nucléaire en France

PRINCIPAUX ELEMENTS CONTENUS DANS LES COMBUSTIBLES USES

en kg/tonne de combustible REP 1300. après 3 ans de refroidissement

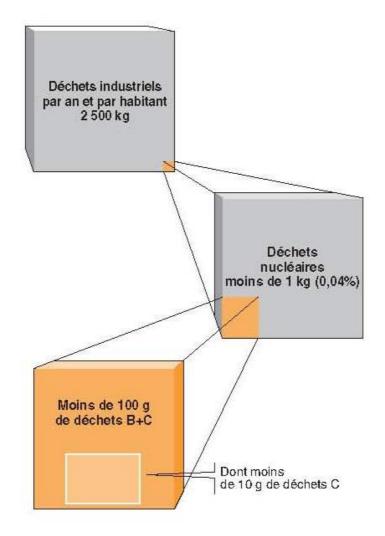
Actinides

Np	0,43
Pu	10
Am	0,38
Cm	0,042

Total 10,852 kg

Uranium
Total 935,548 kg

Source: CNE

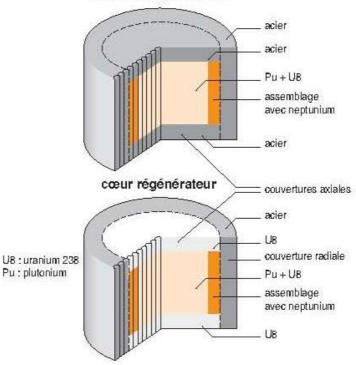

Produits de fission

Kr, Xe	6,0	Ru, Rh, Pd	0,86
Cs, Rb	3,1	Ag, Cd,	
Sr, Ba	2,5	In, Sn, Sb	0,25
Y, La	1,7	Autres	
Zr	3,7	Ce	2,5
Se, Te	0,56	Pr	1,2
Mo	3,5	Nd	4,2
1	0,23	Sm	0,82
Tc	0,23	Eu	0,15

Total 35,6 kg

Très faible Activité (TFA)		Déchets TFA stockés en surface au Centre de stockage TFA de l'Aube		Α	β, γ Labos, médecine nucléaire Industrie, gants, filtres, résines
Faible Activité (FA)	Déchets VTC gérés sur place par	Déchets FMA-VC Stockés en surface au Centre de	Déchets FA-VL Centre de stockage à faible profondeur (entre 15 et 200 m) à l'étude. Mise en service prévue en 2019.		
déc radioac Moyenne ensuite	décroissance radioactive. Ils sont ensuite gérés comme des déchets classiques.	no cincuano no la	Déchets MA-VL Centre de stockage profond (à 500 m) à l'étude. Mise en service prévue en 2025.	В	α
Haute Activité (HA)		Déchets HA Centre de stockage profond (à 500 m) à l'étude. Mise en service prévue en 2025. Durée de vie		С	α , β , γ Retraitement
Vie très courte (VTC période radioactive < 100 jours	- Burning of Antonio Section and a section of	Vie courte (VC) période radioactive ≤ 31 ans	Vie longue (VL) période radioactive > 31 ans		Combustibles irradiés

DECHETS PRODUITS EN FRANCE



Source: CEA

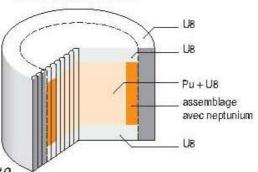
Réacteur à neutrons rapides Incinérateur d'actinides

cœur sous-générateur

Pour 10 TWh produits, 1 000 kg de Pu brûlês 800 kg de Pu produits

Pour 10 TWh produits,

1 000 kg de Pu brûlés

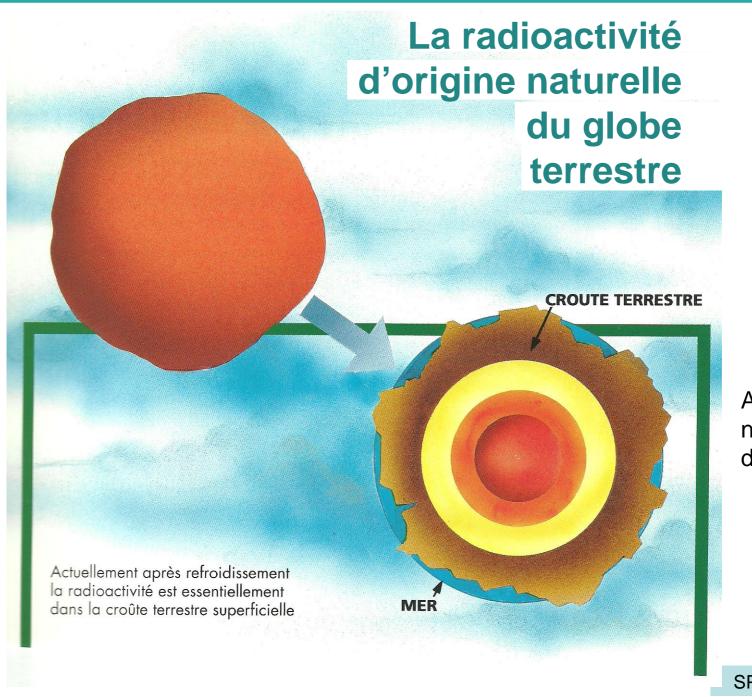

1 000 kg de Pu produits

cœur surgénérateur

1 000 kg de Pu brûlés 1 200 kg de Pu produits

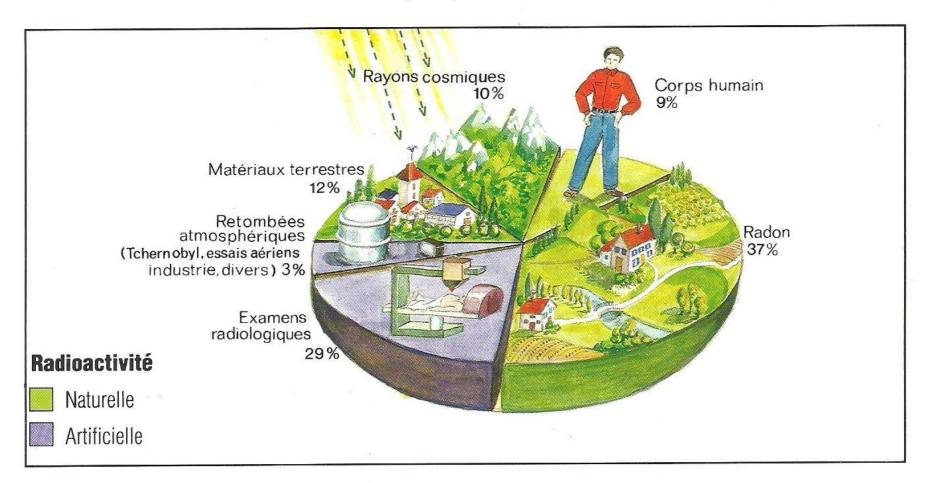
Pour 10 TWh produits,

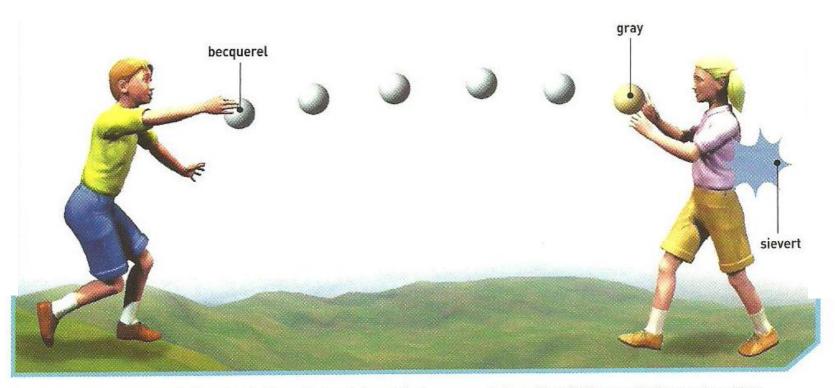
U8 = uranium 238 Pu = plutonium



Source: « Les colonnes de Creys » n° 10

BECQUEREL


ET RADIOACTIVITE D'ORIGINE NATURELLE



Analogues naturels d' OKLO

Répartition des différentes expositions des populations

Unités de mesure de la radioactivité

Cette image permet de symboliser la relation entre les trois unités de mesure de la radioactivité: un enfant lance des objets en direction d'une camarade. Le nombre d'objets envoyés peut se comparer au becquerel (nombre de désintégrations par seconde); le nombre d'objets reçu par la camarade, au gray (dose absorbée); les marques laissées sur son corps selon la nature des objets, lourds ou légers, au sievert (effet produit).

Doses reçues

lors d'un examen radiologique

NRD en mGy Dose e

Dose effective en mSv

Radio classique

Thorax de face	0,3	0,02
- de profil	1,5	
Mammographie	10	0,7
Crâne face	5	
Rachis lombaire de face	10	1,3
- de profil	30	
Abdomen	10	7

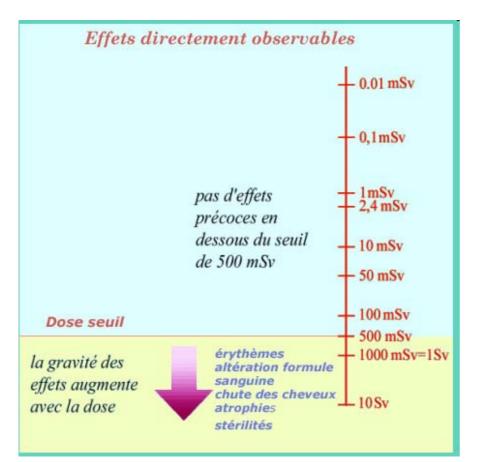
Scanographie

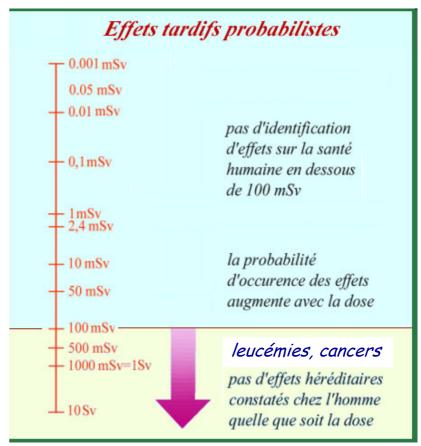
20	8	
25	10	
58		
	25	25 10

lors d'une radiothérapie

De l'ordre de 40 à 60 Gray (et non pas Sievert, car irradiations focalisées) selon les pathologies.

SP - A 032


Bombardements Hiroshima – Nagasaki I


```
6 et 9 août 1945  

| population: 580 000 |
| décès: 240 000 |
| survivants suivis: 120 321 |
| Entre 1950 et 1990 | décès constatés | décès attendus | excès |
| cohorte survivants | population témoin | probabiliste |
| par cancers solides | 7578 | 7244 | 334 |
| par leucémies | 249 | 162 | 87
```

- Aucun effet héréditaire n'a jamais été observé chez l'homme
- Hormesis (recouvrance)

Bombardements Hiroshima – Nagasaki II

UNSCEAR, CIPR Normes de radioprotection

- limite travailleurs 100 mSv / 5 ans ou 20 mSv / an
- limite maximale admise en intervention 250 mSv

Accident Three Mile Island (TMI)

28 mars 1979

- perte d'étanchéité circuit primaire
- défaut de refroidissement du cœur
 45 % cœur fondu dont 20 % au fond cuve
 - cuve non percée circuit confinement intègre

décès :

opérateurs de quart (10) : 20 mSv < d < 30 mSv

5 avril 1979

- débit dose salle de commande : 0,001 mSv / h
- dose moyenne population :
- 2000 pers. autour centrale : 0,09 mSv sur leur propre initiative 100 000 pers. ont temporairement évacué leur habitation dans la journée

Accident Tchernobyl

travailleurs 600
décès 42
fortement irradiés 134 250 mS < d < 600 mSv

avril - mai 1986

liquidateurs $600\ 000\ d < 100\ mSv$ territoires $d\acute{e}p\^{o}t^{137}\ Cs$ $37\ kBq\ /\ m^2$ population $6\ 000\ 000$ $d < 10\ m\ Sv$ adultes : pas d'augmentation incidence cancers enfants : excès probabiliste cancers thyroïdiens

Accident Fukushima

11 mars 2011 {	opérateurs		800	
	décès		4 (hors nucléaire)	
	d < 100 mSv		766	
	100 mSv < d < 250 mSv		27	
	250 mSv < d < 580 mSv		3	
15 juin 2011 {	intervenants		3726	
	d < 100 mSv		3716	
	250 mSv < d < 680 mSv		10	
21 avril 2011	populations	80 000	zone évacuation	8 km
			zone interdite	20 km

Conclusion I

Les quelques éléments de réflexion ainsi présentés indiquent que les progrès technologiques dans les cinquante prochaines années conduiraient à passer du concept d'énergies renouvelables à celui d'énergies alternatives.

A l'aune des 3 critères ASA, rien ne doit être exclu de nos champs d'investigation et d'action, car face aux évolutions démographiques, économiques et sociales il s'agira de s'adapter en permanence aux défis du moment et du lieu considérés.

Mais n'entrainons pas nos compagnons terrestres dans des utopies farfelues et des idéologies mortifères. Les lois physiques de base s'imposent à nous tous de façon implacable.

Aux énergies renouvelables, les consommations individuelles et/ou décentralisées.

Pour répondre aux besoins énergétiques industriels, seul le nucléaire, dans une amélioration constante de ses performances et de sa sécurité, peut contrebalancer les énergies carbonées (charbon, pétrole, gaz ...)

Conclusion II

A titre personnel je pense donc que nos efforts devraient porter sur :

- les économies d'énergie
- la recherche fondamentale et appliquée pour le stockage
- l'approfondissement de nos connaissances en radiobiologie
- le maintien en condition de notre parc nucléaire : construction de 1 à 2 EPR par an à partir de 2016
- le développement des réacteurs de génération IV : prototype industriel, puis développement réacteurs à neutrons rapides
- la fusion nucléaire